199 research outputs found

    The deleted in brachydactyly B domain of ROR2 is required for receptor activation by recruitment of Src

    Get PDF
    The transmembrane receptor 'ROR2' resembles members of the receptor tyrosine kinase family of signalling receptors in sequence but its' signal transduction mechanisms remain enigmatic. This problem has particular importance because mutations in ROR2 are associated with two human skeletal dysmorphology syndromes, recessive Robinow Syndrome (RS) and dominant acting Brachydactyly type B (BDB). Here we show, using a constitutive dimerisation approach, that ROR2 exhibits dimerisation-induced tyrosine kinase activity and the ROR2 C-terminal domain, which is deleted in BDB, is required for recruitment and activation of the non-receptor tyrosine kinase Src. Native ROR2 phosphorylation is induced by the ligand Wnt5a and is blocked by pharmacological inhibition of Src kinase activity. Eight sites of Src-mediated ROR2 phosphorylation have been identified by mass spectrometry. Activation via tyrosine phosphorylation of ROR2 receptor leads to its internalisation into Rab5 positive endosomes. These findings show that BDB mutant receptors are defective in kinase activation as a result of failure to recruit Src

    Mediator of DNA Damage Checkpoint 1 (MDC1) Contributes to High NaCl-Induced Activation of the Osmoprotective Transcription Factor TonEBP/OREBP

    Get PDF
    Background: Hypertonicity, such as induced by high NaCl, increases the activity of the transcription factor TonEBP/OREBP whose target genes increase osmoprotective organic osmolytes and heat shock proteins. Methodology: We used mass spectrometry to analyze proteins that coimmunoprecipitate with TonEBP/OREBP in order to identify ones that might contribute to its high NaCl-induced activation. Principal Findings: We identified 20 unique peptides from Mediator of DNA Damage Checkpoint 1 (MDC1) with high probability. The identification was confirmed by Western analysis. We used small interfering RNA knockdown of MDC1 to characterize its osmotic function. Knocking down MDC1 reduces high NaCl-induced increases in TonEBP/OREBP transcriptional and transactivating activity, but has no significant effect on its nuclear localization. We confirm six previously known phosphorylation sites in MDC1, but do not find evidence that high NaCl increases phosphorylation of MDC1. It is suggestive that MDC1 acts as a DNA damage response protein since hypertonicity reversibly increases DNA breaks, and other DNA damage response proteins, like ATM, also associate with TonEBP/OREBP and contribute to its activation by hypertonicity. Conclusions/Significance: MDC1 associates with TonEBP/OREBP and contributes to high NaCl-induced increase of tha

    Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP

    Get PDF
    Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)

    Mitotic phosphorylation activates hepatoma-derived growth factor as a mitogen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatoma-derived growth factor (HDGF) is a nuclear protein that is a mitogen for a wide variety of cells. Mass spectrometry based methods have identified HDGF as a phosphoprotein without validation or a functional consequence of this post-translational modification.</p> <p>Results</p> <p>We found that HDGF in primary mouse aortic vascular smooth muscle cells (VSMC) was phosphorylated. Wild type HDGF was phosphorylated in asynchronous cells and substitution of S103, S165 and S202 to alanine each demonstrated a decrease in HDGF phosphorylation. A phospho-S103 HDGF specific antibody was developed and demonstrated mitosis-specific phosphorylation. HDGF-S103A was not mitogenic and FACS analysis demonstrated a G2/M arrest in HDGF-S103A expressing cells, whereas cells expressing HDGF-S103D showed cell cycle progression. Nocodazole arrest increased S103 phosphorylation from 1.6% to 29% (P = 0.037).</p> <p>Conclusions</p> <p>Thus, HDGF is a phosphoprotein and phosphorylation of S103 is mitosis related and required for its function as a mitogen. We speculate that cell cycle regulated phosphorylation of HDGF may play an important role in vascular cell proliferation.</p

    Survey of Activated FLT3 Signaling in Leukemia

    Get PDF
    Activating mutations of FMS-like tyrosine kinase-3 (FLT3) are found in approximately 30% of patients with acute myeloid leukemia (AML). FLT3 is therefore an attractive drug target. However, the molecular mechanisms by which FLT3 mutations lead to cell transformation in AML remain unclear. To develop a better understanding of FLT3 signaling as well as its downstream effectors, we performed detailed phosphoproteomic analysis of FLT3 signaling in human leukemia cells. We identified over 1000 tyrosine phosphorylation sites from about 750 proteins in both AML (wild type and mutant FLT3) and B cell acute lymphoblastic leukemia (normal and amplification of FLT3) cell lines. Furthermore, using stable isotope labeling by amino acids in cell culture (SILAC), we were able to quantified over 400 phosphorylation sites (pTyr, pSer, and pThr) that were responsive to FLT3 inhibition in FLT3 driven human leukemia cell lines. We also extended this phosphoproteomic analysis on bone marrow from primary AML patient samples, and identify over 200 tyrosine and 800 serine/threonine phosphorylation sites in vivo. This study showed that oncogenic FLT3 regulates proteins involving diverse cellular processes and affects multiple signaling pathways in human leukemia that we previously appreciated, such as Fc epsilon RI-mediated signaling, BCR, and CD40 signaling pathways. It provides a valuable resource for investigation of oncogenic FLT3 signaling in human leukemia

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    Opposing Effects of Sirtuins on Neuronal Survival: SIRT1-Mediated Neuroprotection Is Independent of Its Deacetylase Activity

    Get PDF
    Background: Growing evidence suggests that sirtuins, a family of seven distinct NAD-dependent enzymes, are involved in the regulation of neuronal survival. Indeed, SIRT1 has been reported to protect against neuronal death, while SIRT2 promotes neurodegeneration. The effect of SIRTs 3–7 on the regulation of neuronal survival, if any, has yet to be reported. Methodology and Principal Findings: We examined the effect of expressing each of the seven SIRT proteins in healthy cerebellar granule neurons (CGNs) or in neurons induced to die by low potassium (LK) treatment. We report that SIRT1 protects neurons from LK-induced apoptosis, while SIRT2, SIRT3 and SIRT6 induce apoptosis in otherwise healthy neurons. SIRT5 is generally localized to both the nucleus and cytoplasm of CGNs and exerts a protective effect. In a subset of neurons, however, SIRT5 localizes to the mitochondria and in this case it promotes neuronal death. Interestingly, the protective effect of SIRT1 in neurons is not reduced by treatments with nicotinamide or sirtinol, two pharmacological inhibitors of SIRT1. Neuroprotection was also observed with two separate mutant forms of SIRT1, H363Y and H355A, both of which lack deacetylase activity. Furthermore, LK-induced neuronal death was not prevented by resveratrol, a pharmacological activator of SIRT1, at concentrations at which it activates SIRT1. We extended our analysis to HT-22 neuroblastoma cells which can be induced to die by homocysteic acid treatment. While the effects of most of the SIRT proteins were similar to that observed in CGNs, SIRT6 was modestly protective against homocysteic acid toxicity in HT-22 cells. SIRT5 was generally localized in th

    Differential Proteomic Analysis of Mammalian Tissues Using SILAM

    Get PDF
    Differential expression of proteins between tissues underlies organ-specific functions. Under certain pathological conditions, this may also lead to tissue vulnerability. Furthermore, post-translational modifications exist between different cell types and pathological conditions. We employed SILAM (Stable Isotope Labeling in Mammals) combined with mass spectrometry to quantify the proteome between mammalian tissues. Using 15N labeled rat tissue, we quantified 3742 phosphorylated peptides in nuclear extracts from liver and brain tissue. Analysis of the phosphorylation sites revealed tissue specific kinase motifs. Although these tissues are quite different in their composition and function, more than 500 protein identifications were common to both tissues. Specifically, we identified an up-regulation in the brain of the phosphoprotein, ZFHX1B, in which a genetic deletion causes the neurological disorder Mowat–Wilson syndrome. Finally, pathway analysis revealed distinct nuclear pathways enriched in each tissue. Our findings provide a valuable resource as a starting point for further understanding of tissue specific gene regulation and demonstrate SILAM as a useful strategy for the differential proteomic analysis of mammalian tissues

    Phosphoproteomic Profiling of In Vivo Signaling in Liver by the Mammalian Target of Rapamycin Complex 1 (mTORC1)

    Get PDF
    Our understanding of signal transduction networks in the physiological context of an organism remains limited, partly due to the technical challenge of identifying serine/threonine phosphorylated peptides from complex tissue samples. In the present study, we focused on signaling through the mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which is at the center of a nutrient- and growth factor-responsive cell signaling network. Though studied extensively, the mechanisms involved in many mTORC1 biological functions remain poorly understood.We developed a phosphoproteomic strategy to purify, enrich and identify phosphopeptides from rat liver homogenates. Using the anticancer drug rapamycin, the only known target of which is mTORC1, we characterized signaling in liver from rats in which the complex was maximally activated by refeeding following 48 hr of starvation. Using protein and peptide fractionation methods, TiO(2) affinity purification of phosphopeptides and mass spectrometry, we reproducibly identified and quantified over four thousand phosphopeptides. Along with 5 known rapamycin-sensitive phosphorylation events, we identified 62 new rapamycin-responsive candidate phosphorylation sites. Among these were PRAS40, gephyrin, and AMP kinase 2. We observed similar proportions of increased and reduced phosphorylation in response to rapamycin. Gene ontology analysis revealed over-representation of mTOR pathway components among rapamycin-sensitive phosphopeptide candidates.In addition to identifying potential new mTORC1-mediated phosphorylation events, and providing information relevant to the biology of this signaling network, our experimental and analytical approaches indicate the feasibility of large-scale phosphoproteomic profiling of tissue samples to study physiological signaling events in vivo
    corecore